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ABSTRACT

We present a comprehensive gait dataset from 16 able-bodied participants walking under diverse conditions, to enhance
data-driven models for real-world gait analysis. Utilizing marker-based motion capture, inertial measurement units, and an
instrumented treadmill, we captured lower limb kinematics during treadmill and overground walking, and kinetics during treadmill
walking. The dataset encompasses speeds from 0.1 to 2 m/s, variable step lengths, high-acceleration transitions, stop-and-go
sequences, turning maneuvers reflecting self-directed walking patterns, and asymmetric gait patterns like limping induced by a
split-belt treadmill, simulating certain pathological gait such as in hemiparesis.

The comprehensive nature of this dataset enables the development of robust models that reflect the variability and complexity
inherent in natural walking. Bridging the gap between controlled lab settings and real-world conditions, the dataset enables the
creation of predictive models that are accurate and generalizable. This resource advances tools for diagnostics, monitoring,
rehabilitation, and assistive technologies such as lower-body exoskeletons, ultimately contributing to better clinical outcomes
and a deeper understanding of human gait.

Background & Summary

Human gait analysis is crucial for diagnosing neuromuscular disorders, planning rehabilitation, and developing assistive
technologies like lower-body exoskeletons. Accurate prediction of gait-related indicators—such as gait phase!, patterns
of ground reaction forces (GRFs)?, joint moments>, and the center of mass variations*—is essential for improving patient
outcomes and advancing robotic assistance>°. However, the complexity and variability of human gait—affected by factors like
speed changes, walking surfaces, and asymmetries—make traditional modeling approaches challenging’.

Data-driven methods have emerged as a powerful alternative, capable of capturing details of human gait that to conventional
model-based techniques often miss®. These methods rely on large datasets to learn complex patterns, making them well-suited
for modeling the dynamic nature of gait. But the effectiveness of data-driven models depends heavily on the quality and richness
of the datasets they are trained on’. Comprehensive datasets that cover a wide range of walking conditions are, therefore,
essential for developing robust and generalizable models.

Many existing kinematic datasets focus on controlled, cyclic walking tasks like level walking, stair climbing, or inclined
walking!%-13. These datasets may not capture the variability seen in real-world walking, such as transitions in walking pace,
turning, or pathological gait such as asymmetric gait patterns.

To address this gap, we present an extensive dataset that includes gait data from 16 participants under a variety of conditions.
Our dataset features both treadmill and overground walking, covering speeds from 0.1 to 2 m/s, variable step lengths, high-
acceleration speed changes, stop-and-go scenarios, turning maneuvers, and asymmetric walking patterns like limping. We
collected lower-limb kinematics and kinetics using a camera-based motion capture system, inertial measurement units (IMUs),
and an instrumented treadmill. By including both motion capture and IMU data, our dataset allows for the development of
models applicable in both laboratory settings and real-world environments where motion capture cameras are not viable. This
makes it useful for practical gait analysis using portable sensor setups, extending the applicability of gait models outside the lab.

The uniqueness of our dataset lies in its comprehensive coverage of conditions that mimic real-world walking and its
emphasis on capturing natural, self-directed walking patterns. The experimental protocol was designed with emphasis on
capturing gait transitions during everyday locomotion. This rich dataset provides an valuable resource for human gait analysis
and the development of predictive models that could be used for a range of gait intervention and assistive walking scenarios, for
instance exoskeleton-assisted gait'4.

Our dataset has a wide range of applications, including training predictive models of joint angle trajectories and developing
regression algorithms for continuous gait phase estimation'>~!7. The motion capture data includes dynamic modeling and GRFs
from treadmill walking sessions, making the dataset useful for evaluating and predicting joint torques and ground reaction



forces!8.

With the increasing use of data-hungry machine learning techniques in gait analysis, access to rich datasets is becoming
increasingly critical. Our contribution addresses this need by providing a foundational step toward more refined and accurate
data-driven models that can adapt to the inherent variability of human gait.

Methods

Participants

In this study, sixteen healthy participants (age of 28.06 + 4 years, weight of 72.56 + 18.53 kg, height of 1.74 £ 0.08 m),
including 9 males and 7 females, were enrolled on a voluntary basis with their informed consent. Table 1 demonstrates
demographic information of all participants. In this table, each participant is labeled with a unique ID from S01 to S16, ensuring
adherence to the ethical regulations. The experiment protocol was approved by the University of Waterloo Clinical Research
Ethics Committee (ORE#41794) and all procedures follow the principles outlined in the Declaration of Helsinki.

Participant ID Sex Age Weight [kg] Height [m] Leglength[m] Knee width [m] Ankle width [m]

S01 Female 26 58 1.70 0.90 0.10 0.070
S02 Female 24 75 1.83 0.97 0.09 0.075
S03 Male 39 75 1.78 0.95 0.11 0.075
S04 Male 31 67 1.80 0.98 0.10 0.070
S05 Female 24 63 1.69 0.89 0.10 0.070
S06 Female 25 57 1.61 0.84 0.08 0.070
S07 Female 22 51 1.62 0.83 0.09 0.070
S08 Male 32 85 1.83 0.96 0.11 0.075
S09 Male 27 60 1.74 0.89 0.09 0.075
S10 Male 31 107 1.79 0.94 0.13 0.080
S11 Male 28 69 1.75 0.90 0.10 0.090
S12 Male 32 120 1.86 0.96 0.14 0.090
S13 Female 28 57 1.65 0.89 0.09 0.070
S14 Female 27 70 1.70 0.87 0.11 0.080
S15 Male 26 60 1.74 0.89 0.09 0.075
S16 Male 27 80 1.84 0.93 0.11 0.080

Table 1. Participant Demographics.

Experimental protocol

The experiment protocol comprised treadmill and overground walking, respectively. As illustrated in figure Figure 1C,
participants walked on an instrumented treadmill, without the use of the handrails, under eight distinct conditions for a total
duration of 13 minutes (Figure 1A). In the first four conditions, participants walked at a consistent speed of 0.8 m/s, with
instructions to walk in a normal manner with their preferred stride length, then take shorter strides, followed by longer strides,
and finally return to a normal gait, with each condition lasting 45 seconds. The fifth condition featured a speed sweep, with the
treadmill speed increasing from 0.1 m/s to 1.9 m/s at a constant acceleration of 0.02 m/s?, promptly followed by a uniform
speed reduction back to 0.1 m/s at the rate of -0.02 m/s2. The sixth condition entailed rapid speed transitions between 0.4
m/s, 0.8 m/s, and 1.2 m/s, with the treadmill accelerating at 0.4 m/s? during these transitions. The seventh condition induced
asymmetrical walking, achieved by varying the speeds of the left and right treadmill belts, creating a speed differential of up to
0.4 m/s. Gait asymmetry was evaluated using the swing time ratio (#/onger/tshorrer), focusing on a distinctive feature observed in
post-stroke hemiparesis patients. The treadmill belts were set to have a special speed difference to yield an average maximum
swing time ratio of 1.41 £ 0.19 for all participants. The eighth and concluding condition involved repetitive cycles of initiating
and halting walking at a speed of 0.8 m/s with acceleration of 0.4 m/s2.

The overground session consisted of walking along a 5-meter straight path three times with a rounded 180 degree turn
after with approximate radius of 1 meters shown in Figure Figure 1B. The participants walked for a total of nine trials, with
different walking conditions and self-paced rest times in between. For the first five trials, participants crossed the straightaway
three times with a continuous turn at each end, first with self-selected pace and stride length walking, then fast walking, slow
walking, short strides, long strides. In the last 4 conditions, the participants crossed the straightaway once with one type of
walking, then transitioned to another type halfway along the straight path. The sixth trial, participants started with slow walking
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Figure 1. (A) Speed of each right and left belts during different phases of the treadmill walking experiment. (B) Overground
walking route containing strait walking and turning with different walking conditions (C) Vicon motion capture cameras
(green) measure retro-reflective markers (yellow) placed in the lower body Plug-in convention. IMUs (teal) are attached to the
lateral aspect of the thighs and shanks'”

and transitioned to fast walking. In the seventh trial, they transitioned from fast to slow walking. In the eighth, participants
transitioned from short strides to long strides, and contrariwise for the ninth trial.

Instrumentation

A motion capture system containing eight Vero cameras (Vicon, UK) was utilized to measure the lower limb kinematics. As also
partly shown in figure Figure 1C, 16 reflective markers were attached to the lower limb following the Plug-In Gait convention
(i.e., 4 markers on the hip and 6 markers on each leg)!”. Using this set of markers, the kinematics of the lower limbs were
calibrated, labeled, and tracked using the Vicon Nexus software (Vicon, UK). In the treadmill sessions, data was recorded at a
sampling rate of 100 Hz, and the overground data was recorded at 200 Hz.

Four IUMs (Xsens, the Netherlands) were fixed to the lateral aspect of the thigh and shank of each leg to capture
acceleration, angular velocity, and magnetic field data throughout the gait cycle (see Figure 1C). IMU measurements were
calibrated and recorded using the MT Manager software (Xsens, the Netherlands) at a sampling rate of 100 Hz for both sessions.
Post-processing was applied to the outputs to align the onboard processing outputs of the IMUs to body segment-aligned
frames.

The instrumented treadmill (Bertec, US) was used to record ground reaction forces (GRFs), ground reaction moments, and
center of pressure, during the treadmill session. The reference frame for the treadmill center of pressure is located on the back
left corner of the treadmill, also considered as the right-handed reference frame of the motion caption system where the y-axis
is aligned to the anterior-posterior axis, and the z-axis points upward perpendicular to the ground. The treadmill belt walking
surface was used as the zero point for the z-axis. The GRFs were only recorded for the treadmill session at a sampling rate of 1
kHz.

The motion capture system and the treadmill force plate data acquisitions were synchronized. The IMU data was
synchronized with the motion capture data by temporally aligning the knee angle obtained from motion capture and IMUs.

Experimental procedures

The Vicon system was calibrated to establish the global frame of reference in the treadmill and overground lab environments.
Participants were then outfitted with the Vicon markers and IMUs according to the placements shown in Figure 1C. In both
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Figure 2. (A) The number of steps for each walking condition for all participants in the treadmill sessions. (B) The number of
steps for each walking condition for all participants in the overground sessions.

sessions, participants were given some time to familiarize themselves with the environment, and try walking with the sensors
attached, they were then asked to start walking according to the above mentioned protocols from a stationary, standing position.

Data Records

The dataset containing kinematics from motion capture, ground reaction forces and moments, and IMU sensor measurements
after performing functional calibration’’. The main directory comprises sixteen folders, labeled from S01 to S16, corresponding
to each participant containing two sub folders for the treadmill session of data collection, and the overground walking session.
Each of these sub folders is divided into two folders: the first containing the ground reaction forces (measured only for treadmill
walking) and the motion capture data, and the second containing the IMU measurements. The motion capture folder includes
marker positions, Plug-in Gait model joint angles, joint torques, segment transformations, and force plate data. The IMU folder
contains the accelerometer, gyroscope, and magnetometer measurements from each of the IMU sensors on the thigh and shank
of each leg.

Data files are stored in the Comma-Separated Values (CSV) format with UTF-8 encoding. The naming convention for each
file in the dataset is "<session>_<participant ID>_<measurement type>.csv", where the participant ID is from SO1 to S16,
and the measurement type is one of: "model", "markers", "forces", "imu". The first row of each file contains the headers that
identifies the contents of each row.

Motion Capture Data

Subject calibration for each participant was conducted at the beginning of the session to ensure accurate tracking of the markers,
positioning them according to Vicon’s specified setup for consistency. Once the data was collected, gaps in the marker positions
were addressed using a combination of gap-filling methods available in Vicon Nexus. The Woltring (Quintic spline) method
was employed to generate a quintic spline using valid frames around the gap as seed data, filling the gap with interpolated
values. For larger gaps, pattern and rigid body methods were used to interpolate marker trajectories according to the motion
pattern of nearby markers or those that form a rigid body containing the missing marker.

After filling gaps, segment labels were carefully reviewed for correctness, and modifications were made as necessary.
Following this verification process, the Plug-in Gait model was applied to the processed marker position data to calculate
lower body kinematics, such as joint angles and trajectories, as well as kinetics through inverse dynamics. This comprehensive
approach ensured that the resulting kinematic and kinetic data were robust and reliable for subsequent analyses.

The model outputs the Cartesian positions of the leg segments in units of mm, as well as orientations with respect to the lab
frame in the Helical axis format. The kinematic and kinetic model outputs include the joint angles, forces, moments, and power.
The marker file contains the unfiltered positions of the segments.

The ground reaction forces, moments and center of pressure for each of the left and right belts of the treadmill are stored in
the forces files.

IMU data
The IMU sensor records contain the accelerometer, gyroscope, magnetometer along the segment-aligned frame axes, as
well as the orientation. The orientation channels are the quaternion and rotation matrix representations of the rotation from
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Figure 3. (A)The hip and knee flexion angles for all participants walking with their self-selected stride length at 0.8 m/s. (B)

The hip and knee flexion angles for all participants walking with their self-selected stride length and speed. (C) The gait

kinematics and ground reaction force of the first 30 steps of the Speed Sweep at 0.1 m/s compared to 30 steps at the peak speed

of 1.9 m/s.

segment-aligned frame to the global frame. The columns of the rotation matrix are the coordinates of the segment-frame basis
vectors in the global frame of reference.

The IMU measurements were calibrated in post-processing so that the reference frames align with a segment aligned frame.
The x-axis points in the anterior direction, y-axis points in the left direction and is aligned with the joint flexion axis. The z-axis
points in the superior direction according to the right-hand cross product of the x- and y-axes.

The normal vector to the two principal components was set as the joint axis of rotation. The forward axis was chosen as the
perpendicular between the joint axis and the gravitational acceleration during static standing.

The unprocessed IMU data contains gaps where the wireless IMUs went out of range of the recording computer, so the
missing data was filled in using cubic spline interpolation for the accelerometer, gyroscope, and magnetometer channels. Both
orientation quaternions and rotation matrices were filled in using spherical linear interpolation.

Technical Validation

The total number of steps across all sessions, participants, and walking conditions in the database is 10045 steps. The distribution
of data in terms of the number of steps for each of the different walking conditions for the treadmill and overground sessions
are shown in Figure 2A and Figure 2B, respectively.

The quality of the dataset was evaluated by inspecting the joint angles over the gait cycle across participants. The average
hip and knee flexion angles as a function of gait phase (i.e. normalized step time) are shown to be consistent across participants
in Figure 3A and Figure 3B. Heel strikes were determined by the onset of GRFs in the treadmill sessions or peak vertical
accelerations in the overground sessions.

The IMU measurements after functional calibration were used to estimate the knee flexion angles and compared to the
motion capture measurements. The IMU knee flexion was estimated at timestep by taking the second Euler angle (ZYX
extrinsic-order) of the relative rotation from the segment-aligned thigh frame to shank frame was computed. All Pearson
correlation coefficients including both legs of all participants, treadmill and overground, were above 0.90, indicating that the
segment-aligned frame was correctly aligned with the thigh and shank segments, with a shared joint axis and demonstrating the
reliability of the dataset for applications using joint angle estimation from IMUs.

The variance between slow and fast walking kinematics for a single representative participant is shown in Figure 3C. At the
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fastest walking speed, the average knee flexion angle has a larger peak flexion angle after the heel strike (10% of gait phase) and
swing ( 65% of gait phase) compared to the slowest walking speed, which matches the literature®'. Also, the vertical ground
reaction forces have a larger peak magnitude with a more prominent variation at mid-stance, and the earlier return to zero
indicates that a longer portion of time is spent in the swing phase of the gait cycle compared to the slower walking pace.

The utility of the released dataset has been validated through previous research. Shushtari et al. trained a Time-Delay neural
network to predict a new user’s gait phase in real-time, utilizing hip and knee joint angles as input data'®. Tang et al. further
developed a Multi-Resolution Neural Network to predict the gait phase solely based on IMU data'”. Dinovitzer et al. leveraged
this dataset to predict ground reaction forces and joint torques'®. These studies provide robust and real-time solutions for the
prediction of the user’s gait phase and the desired joint torques, which have subsequently been utilized to develop and test
controllers for lower-limb exoskeletons?>2,

Usage Notes

The motion capture and inertial measurement unit (IMU) data are stored in ".csv" files that are compatible with importing in
any programming language using standard libraries. The released dataset has been synchronized, trimmed, and gap-filled. A
frequency of 100 Hz is recommended to downsample the force and overground motion capture data to unify the sampling rate
across all modalities. Any pre-processing of the dataset, such as filtering ground reaction forces, is suggested be performed
before downsampling.

The gait phase estimator developed in'® based on the collected data is also published with the dataset. The provided module
is usable in MATLAB Simulink 2023B or later versions running at 200 Hz. The input consists the hip and knee data of the
right and left legs in degrees. The output is the gait phase of the right and left legs normalized to [0, 1), where 0 denotes the
heel-strike event of the corresponding leg. The provided block can be converted to C for embedded processing using MATLAB
Coder.

Code availability

The code utilized for visualizing the data, including a sample case for importing and processing the dataset, has been made
publicly available alongside the dataset. Furthermore, the gait phase estimator, developed as an exemplary application of this
dataset, has been shared for the first time. Although this module was previously discussed in a separate publication!, it was not
previously made accessible. Additional codes are available upon request by direct contact with the corresponding authors.
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